Splunk Search

Extract JSON objects

vishaltaneja070
Motivator

How can i extract this:
"properties": {"nextLink": null,
"columns": [
{"name": "Cost", "type": "Number"},
{"name": "Date", "type": "Number"},
{"name": "Charge", "type": "String"},
{"name": "Publisher", "type": "String"},
{"name": "Resource", "type": "String"},
{"name": "Resource", "type": "String"},
{"name": "Service", "type": "String"},
{"name": "Standard", "type": "String"},
"rows": [
[2.06, 20210807, "usage", "uuuu", "hhh", "gd", "bandwidth", "azy", "HHH"],
[2.206, 20210807, "usage", "uuuhhh", "ggg", "gd", "bandwidth", "new", "YYY"] ]

No of columns can be increased.

 

 

Labels (1)
Tags (1)
0 Karma
1 Solution

ITWhisperer
SplunkTrust
SplunkTrust

Assuming columns is supposed to be an array of name/type pairs (added closing ]) and that there are supposed to be 9 of these pairs (added Comment), and that you have a properly formatted JSON string (added surrounding and closing braces), then you could do something like this

 

| makeresults 
| eval _raw="{\"properties\": {\"nextLink\": null,
\"columns\": [
{\"name\": \"Cost\", \"type\": \"Number\"},
{\"name\": \"Date\", \"type\": \"Number\"},
{\"name\": \"Charge\", \"type\": \"String\"},
{\"name\": \"Publisher\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Service\", \"type\": \"String\"},
{\"name\": \"Standard\", \"type\": \"String\"},
{\"name\": \"Comment\", \"type\": \"String\"}],
\"rows\": [
[2.06, 20210807, \"usage\", \"uuuu\", \"hhh\", \"gd\", \"bandwidth\", \"azy\", \"HHH\"],
[2.206, 20210807, \"usage\", \"uuuhhh\", \"ggg\", \"gd\", \"bandwidth\", \"new\", \"YYY\"]] }}"



| spath path="properties.columns{}.name" output=columnnames
| spath path="properties.rows{}{}" output=rows
| streamstats count as event 
| mvexpand rows
| streamstats count as row by event
| eval index=(row-1)%mvcount(columnnames)
| eval name=mvindex(columnnames,index)
| eval {name}=rows
| eval row=floor((row-1)/mvcount(columnnames))
| fields - columnnames name index rows
| stats values(*) as * by row event

 

 

View solution in original post

0 Karma

ITWhisperer
SplunkTrust
SplunkTrust

Assuming columns is supposed to be an array of name/type pairs (added closing ]) and that there are supposed to be 9 of these pairs (added Comment), and that you have a properly formatted JSON string (added surrounding and closing braces), then you could do something like this

 

| makeresults 
| eval _raw="{\"properties\": {\"nextLink\": null,
\"columns\": [
{\"name\": \"Cost\", \"type\": \"Number\"},
{\"name\": \"Date\", \"type\": \"Number\"},
{\"name\": \"Charge\", \"type\": \"String\"},
{\"name\": \"Publisher\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Service\", \"type\": \"String\"},
{\"name\": \"Standard\", \"type\": \"String\"},
{\"name\": \"Comment\", \"type\": \"String\"}],
\"rows\": [
[2.06, 20210807, \"usage\", \"uuuu\", \"hhh\", \"gd\", \"bandwidth\", \"azy\", \"HHH\"],
[2.206, 20210807, \"usage\", \"uuuhhh\", \"ggg\", \"gd\", \"bandwidth\", \"new\", \"YYY\"]] }}"



| spath path="properties.columns{}.name" output=columnnames
| spath path="properties.rows{}{}" output=rows
| streamstats count as event 
| mvexpand rows
| streamstats count as row by event
| eval index=(row-1)%mvcount(columnnames)
| eval name=mvindex(columnnames,index)
| eval {name}=rows
| eval row=floor((row-1)/mvcount(columnnames))
| fields - columnnames name index rows
| stats values(*) as * by row event

 

 

0 Karma
Get Updates on the Splunk Community!

Community Content Calendar, November Edition

Welcome to the November edition of our Community Spotlight! Each month, we dive into the Splunk Community to ...

October Community Champions: A Shoutout to Our Contributors!

As October comes to a close, we want to take a moment to celebrate the people who make the Splunk Community ...

Stay Connected: Your Guide to November Tech Talks, Office Hours, and Webinars!

What are Community Office Hours? Community Office Hours is an interactive 60-minute Zoom series where ...