Splunk Search

Extract JSON objects

vishaltaneja070
Motivator

How can i extract this:
"properties": {"nextLink": null,
"columns": [
{"name": "Cost", "type": "Number"},
{"name": "Date", "type": "Number"},
{"name": "Charge", "type": "String"},
{"name": "Publisher", "type": "String"},
{"name": "Resource", "type": "String"},
{"name": "Resource", "type": "String"},
{"name": "Service", "type": "String"},
{"name": "Standard", "type": "String"},
"rows": [
[2.06, 20210807, "usage", "uuuu", "hhh", "gd", "bandwidth", "azy", "HHH"],
[2.206, 20210807, "usage", "uuuhhh", "ggg", "gd", "bandwidth", "new", "YYY"] ]

No of columns can be increased.

 

 

Labels (1)
Tags (1)
0 Karma
1 Solution

ITWhisperer
SplunkTrust
SplunkTrust

Assuming columns is supposed to be an array of name/type pairs (added closing ]) and that there are supposed to be 9 of these pairs (added Comment), and that you have a properly formatted JSON string (added surrounding and closing braces), then you could do something like this

 

| makeresults 
| eval _raw="{\"properties\": {\"nextLink\": null,
\"columns\": [
{\"name\": \"Cost\", \"type\": \"Number\"},
{\"name\": \"Date\", \"type\": \"Number\"},
{\"name\": \"Charge\", \"type\": \"String\"},
{\"name\": \"Publisher\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Service\", \"type\": \"String\"},
{\"name\": \"Standard\", \"type\": \"String\"},
{\"name\": \"Comment\", \"type\": \"String\"}],
\"rows\": [
[2.06, 20210807, \"usage\", \"uuuu\", \"hhh\", \"gd\", \"bandwidth\", \"azy\", \"HHH\"],
[2.206, 20210807, \"usage\", \"uuuhhh\", \"ggg\", \"gd\", \"bandwidth\", \"new\", \"YYY\"]] }}"



| spath path="properties.columns{}.name" output=columnnames
| spath path="properties.rows{}{}" output=rows
| streamstats count as event 
| mvexpand rows
| streamstats count as row by event
| eval index=(row-1)%mvcount(columnnames)
| eval name=mvindex(columnnames,index)
| eval {name}=rows
| eval row=floor((row-1)/mvcount(columnnames))
| fields - columnnames name index rows
| stats values(*) as * by row event

 

 

View solution in original post

0 Karma

ITWhisperer
SplunkTrust
SplunkTrust

Assuming columns is supposed to be an array of name/type pairs (added closing ]) and that there are supposed to be 9 of these pairs (added Comment), and that you have a properly formatted JSON string (added surrounding and closing braces), then you could do something like this

 

| makeresults 
| eval _raw="{\"properties\": {\"nextLink\": null,
\"columns\": [
{\"name\": \"Cost\", \"type\": \"Number\"},
{\"name\": \"Date\", \"type\": \"Number\"},
{\"name\": \"Charge\", \"type\": \"String\"},
{\"name\": \"Publisher\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Resource\", \"type\": \"String\"},
{\"name\": \"Service\", \"type\": \"String\"},
{\"name\": \"Standard\", \"type\": \"String\"},
{\"name\": \"Comment\", \"type\": \"String\"}],
\"rows\": [
[2.06, 20210807, \"usage\", \"uuuu\", \"hhh\", \"gd\", \"bandwidth\", \"azy\", \"HHH\"],
[2.206, 20210807, \"usage\", \"uuuhhh\", \"ggg\", \"gd\", \"bandwidth\", \"new\", \"YYY\"]] }}"



| spath path="properties.columns{}.name" output=columnnames
| spath path="properties.rows{}{}" output=rows
| streamstats count as event 
| mvexpand rows
| streamstats count as row by event
| eval index=(row-1)%mvcount(columnnames)
| eval name=mvindex(columnnames,index)
| eval {name}=rows
| eval row=floor((row-1)/mvcount(columnnames))
| fields - columnnames name index rows
| stats values(*) as * by row event

 

 

0 Karma
Get Updates on the Splunk Community!

AI for AppInspect

We’re excited to announce two new updates to AppInspect designed to save you time and make the app approval ...

App Platform's 2025 Year in Review: A Year of Innovation, Growth, and Community

As we step into 2026, it’s the perfect moment to reflect on what an extraordinary year 2025 was for the Splunk ...

Operationalizing Entity Risk Score with Enterprise Security 8.3+

Overview Enterprise Security 8.3 introduces a powerful new feature called “Entity Risk Scoring” (ERS) for ...