All Apps and Add-ons

How to name clusters when using TFIDF and DBSCAN in the machine learning toolkit to do string clustering?

sijingwu
New Member

I have a case where a "Message" field contains sentences of strings, which indicated different kind of system errors.
We want to use the machine learning toolkit to automatically clusters those errors into several categories.

Since we are dealing with sentences, we first decided to use TFIDF to vectorize the strings, and then use the DBSCAN to do the clustering. Here is the search:

index="mail" sourcetype="P1_tickets" 
| rex field=_raw "Message\s+:(?<Message>(.*\n)+?(?=Extra Message|Control|Log|Repeats|Via Host))" 
| fit TFIDF Message into message_model 
| fit DBSCAN Message_tf*

The result is promising. We are seeing similar system errors being grouped together into the same cluster. However, the clusters are named by default 0.0, 1.0, 2.0, and etc. We want to actually use the keywords from the sentences to name the clusters, which can actually give the user some idea of what the error is. Is there anyway to achieve this in Splunk?

0 Karma
Career Survey
First 500 qualified respondents will receive a $20 gift card! Tell us about your professional Splunk journey.

Can’t make it to .conf25? Join us online!

Get Updates on the Splunk Community!

Take Action Automatically on Splunk Alerts with Red Hat Ansible Automation Platform

 Are you ready to revolutionize your IT operations? As digital transformation accelerates, the demand for ...

Calling All Security Pros: Ready to Race Through Boston?

Hey Splunkers, .conf25 is heading to Boston and we’re kicking things off with something bold, competitive, and ...

Beyond Detection: How Splunk and Cisco Integrated Security Platforms Transform ...

Financial services organizations face an impossible equation: maintain 99.9% uptime for mission-critical ...