Splunk Search

compare time forecasts to incoming data

Deniz_Oe
Explorer

Hey all,

I am currently trying to achieve the following:

train a Kalman filter with a periodicity i found via Autocorrelation on the last 3 weeks data and make prediction for one week of future data. I do this as follows: 

 

index = cisco_prod 
| timechart span=1h count as logins_hour 
| fit ACF logins_hour k=200 fft=true conf_interval=95 as corr 
| top limit=2 acf(corr),Lag 
| stats max(Lag) as corr_lag 
| map search="search index = cisco_prod | timechart span=1h count as logins_hour | predict \"logins_hour\" as prediction algorithm=LLP holdback=200 future_timespan=368 period=$corr_lag$ upper95=upper95 lower95=lower95"
| `forecastviz(368, 200, "logins_hour", 95)`

 

But how do I now use this predictions for the coming week, to actually compare them to the incoming data? The thing is, I don't want to always train the Kalman filter with new data because if I feed it with anomalies it will not make correct predictions for the future. 

Has anyone an idea? 

 

Labels (4)
Career Survey
First 500 qualified respondents will receive a $20 gift card! Tell us about your professional Splunk journey.
Get Updates on the Splunk Community!

Thanks for the Memories! Splunk University, .conf25, and our Community

Thank you to everyone in the Splunk Community who joined us for .conf25, which kicked off with our iconic ...

Data Persistence in the OpenTelemetry Collector

This blog post is part of an ongoing series on OpenTelemetry. What happens if the OpenTelemetry collector ...

Introducing Splunk 10.0: Smarter, Faster, and More Powerful Than Ever

Now On Demand Whether you're managing complex deployments or looking to future-proof your data ...