Splunk Search

compare time forecasts to incoming data

Deniz_Oe
Explorer

Hey all,

I am currently trying to achieve the following:

train a Kalman filter with a periodicity i found via Autocorrelation on the last 3 weeks data and make prediction for one week of future data. I do this as follows: 

 

index = cisco_prod 
| timechart span=1h count as logins_hour 
| fit ACF logins_hour k=200 fft=true conf_interval=95 as corr 
| top limit=2 acf(corr),Lag 
| stats max(Lag) as corr_lag 
| map search="search index = cisco_prod | timechart span=1h count as logins_hour | predict \"logins_hour\" as prediction algorithm=LLP holdback=200 future_timespan=368 period=$corr_lag$ upper95=upper95 lower95=lower95"
| `forecastviz(368, 200, "logins_hour", 95)`

 

But how do I now use this predictions for the coming week, to actually compare them to the incoming data? The thing is, I don't want to always train the Kalman filter with new data because if I feed it with anomalies it will not make correct predictions for the future. 

Has anyone an idea? 

 

Labels (4)
Career Survey
First 500 qualified respondents will receive a $20 gift card! Tell us about your professional Splunk journey.

Can’t make it to .conf25? Join us online!

Get Updates on the Splunk Community!

Can’t Make It to Boston? Stream .conf25 and Learn with Haya Husain

Boston may be buzzing this September with Splunk University and .conf25, but you don’t have to pack a bag to ...

Splunk Lantern’s Guide to The Most Popular .conf25 Sessions

Splunk Lantern is a Splunk customer success center that provides advice from Splunk experts on valuable data ...

Unlock What’s Next: The Splunk Cloud Platform at .conf25

In just a few days, Boston will be buzzing as the Splunk team and thousands of community members come together ...