Splunk Search

How to calculate concurrent operations on a server in a timechart?

jackie_1001
New Member

Hi,

I'm trying to show the concurrent number of 2 operations(eg, data 'export', and data 'import') on a server in a time chart .

Here is my log looks like:

2018-05-08T06:02:31 id=1 type=chunk_data
 2018-05-08T06:02:32 id=1 type=export_chunk
 2018-05-08T06:02:32 id=2 type=import_data
 2018-05-08T06:02:32 id=1 type=export_chunk
2018-05-08T06:02:33 id=1 type=export_chunk
2018-05-08T06:02:33 id=1 type=export_chunk
2018-05-08T06:02:33 id=2 type=post_import
2018-05-08T06:02:34 id=2 type=post_import_cleanup

The export operation include the following 2 stages:

  1. chunking data first, which defined by type=chunk_data in the log
  2. then export chunked data concurrently, which specified by multiple log events with type=export_chunk

The import operation include the following stages:

  1. import data, with type=import_data in the log
  2. post import, with type=post_import in the log
  3. clean up, with type=post_import_cleanup in the log

So the expected output in the following search ranges:

  1. if from 2018-05-08T06:02:31 -- 2018-05-08T06:02:34, 1 export and 1 import
  2. if from 2018-05-08T06:02:32 -- 2018-05-08T06:02:34, 1 export and 1 import. in this case, we don't have type=chunk_data within the search range, but still should consider there was 1 export operation
  3. if from 2018-05-08T06:02:32 -- 2018-05-08T06:02:33, 1 export and 1 import. In this case, we don't have type=post_import_cleanup in the search range, but still should consider 1 ongoing import.

I'm new to Splunk and trying to use transaction command, but having trouble to figure out the query.

Any input would be highly appreciated!

0 Karma

niketn
Legend

@jackie_1001, ideally you should use Timeline Custom Visualization to depict this kind of transaction over time.
And while you can use transaction to correlate events stats (or rather streamstats in your case) may be a better option. Refer to documentation: https://docs.splunk.com/Documentation/Splunk/latest/Search/Abouteventcorrelation

While I am not able to grasp the criteria for Time Window that you have come up with please try the following run anywhere examples (1) Uses Timeline Custom Visualization to show completed Import and Export. (2) Show cumulative Import and Export using streamstats command.

alt text

Simple XML Dashboard code with Run Anywhere example based on sample data in the question.

<dashboard>
  <label>Import Export transaction</label>
  <row>
    <panel>
      <title>Timeline</title>
      <viz type="timeline_app.timeline">
        <search>
          <query>| makeresults
| eval data="2018-05-08T06:02:31 id=1 type=chunk_data;2018-05-08T06:02:32 id=1 type=export_chunk;2018-05-08T06:02:32 id=2 type=import_data;2018-05-08T06:02:32 id=1 type=export_chunk;2018-05-08T06:02:33 id=1 type=export_chunk;2018-05-08T06:02:33 id=1 type=export_chunk;2018-05-08T06:02:33 id=2 type=post_import;2018-05-08T06:02:34 id=2 type=post_import_cleanup"
| makemv data delim=";"
| mvexpand data
| rename data as _raw
| KV
| rex "^(?<_time>[^\s]+)\s"
| eval _time=strptime(_time,"%Y-%m-%dT%H:%M:%S")
| reverse
| dedup id type
| stats count as eventCount earliest(_time) as _time latest(_time) as latestTime values(type) as type by id
| search (type="chunk_data" AND type="export_chunk") OR (type="import_data" AND type="post_import")
| eval action=if(type="export_chunk","Export","Import")
| eval duration=(latestTime-_time)*1000
| eval earliestTime=strftime(_time,"%Y-%m-%d %H:%M:%S")
| eval latestTime=strftime(latestTime,"%Y-%m-%d %H:%M:%S")
| eval TimeRange=earliestTime." - ".latestTime
| table _time id action duration</query>
          <earliest>-24h@h</earliest>
          <latest>now</latest>
          <sampleRatio>1</sampleRatio>
        </search>
        <option name="drilldown">none</option>
        <option name="timeline_app.timeline.axisTimeFormat">SECONDS</option>
        <option name="timeline_app.timeline.colorMode">categorical</option>
        <option name="timeline_app.timeline.maxColor">#DA5C5C</option>
        <option name="timeline_app.timeline.minColor">#FFE8E8</option>
        <option name="timeline_app.timeline.numOfBins">6</option>
        <option name="timeline_app.timeline.tooltipTimeFormat">SECONDS</option>
        <option name="timeline_app.timeline.useColors">1</option>
        <option name="trellis.enabled">0</option>
        <option name="trellis.scales.shared">1</option>
        <option name="trellis.size">medium</option>
      </viz>
    </panel>
  </row>
  <row>
    <panel>
      <title>Cumulative Completed Import Export Count</title>
      <table>
        <search>
          <query>| makeresults 
| eval data="2018-05-08T06:02:31 id=1 type=chunk_data;2018-05-08T06:02:32 id=1 type=export_chunk;2018-05-08T06:02:32 id=2 type=import_data;2018-05-08T06:02:32 id=1 type=export_chunk;2018-05-08T06:02:33 id=1 type=export_chunk;2018-05-08T06:02:33 id=1 type=export_chunk;2018-05-08T06:02:33 id=2 type=post_import;2018-05-08T06:02:34 id=2 type=post_import_cleanup" 
| makemv data delim=";" 
| mvexpand data 
| rename data as _raw 
| KV 
| rex "^(?<_time>[^\s]+)\s" 
| eval _time=strptime(_time,"%Y-%m-%dT%H:%M:%S") 
| reverse 
| dedup id type 
| reverse 
| streamstats earliest(_time) as earliestTime latest(_time) as latestTime values(type) as type by id 
| eval _time=latestTime
| eval action= case((type="chunk_data" AND type="export_chunk"),"Export",(type="import_data" AND type="post_import"),"Import",true(),"NA") 
| eval count= if((type="chunk_data" AND type="export_chunk") OR (type="import_data" AND type="post_import"),1,0)
| streamstats count(eval(action="Export")) as Export count(eval(action="Import")) as Import
| table _time Export Import</query>
          <earliest>1525739400</earliest>
          <latest>1525740300</latest>
          <sampleRatio>1</sampleRatio>
        </search>
        <option name="count">20</option>
        <option name="dataOverlayMode">none</option>
        <option name="drilldown">none</option>
        <option name="percentagesRow">false</option>
        <option name="refresh.display">progressbar</option>
        <option name="rowNumbers">false</option>
        <option name="totalsRow">false</option>
        <option name="wrap">true</option>
      </table>
    </panel>
  </row>
</dashboard>
____________________________________________
| makeresults | eval message= "Happy Splunking!!!"
0 Karma

jackie_1001
New Member

Hi @niketnilay, thanks so much for your response, it's very helpful!

I'm looking at 1-hour time window to show the concurrent numbers of import and export.
For the ' (2) Show cumulative Import and Export using streamstats command.', the result shows 2 import at '2018-05-08T06:02:34' timestamp. With 1-hour time window, the output would be 1 import and 1 export. I'm trying to update the query to get the expected result, but still no succeed. Could you help?

Thanks!

0 Karma

niketn
Legend

@jackie_1001, can you try to change the second streamstats with timechart with span=1h i.e. | streamstats count(eval(action="Export")) as Export count(eval(action="Import")) as Import with:

| timechart span=1h count(eval(action="Export")) as Export count(eval(action="Import")) as Import
____________________________________________
| makeresults | eval message= "Happy Splunking!!!"
0 Karma

jackie_1001
New Member

Clarification:

The start of export operation can be identified by type=chunk_data, and the end of it can be identified by the last instance of type=export_chunk.

The start of the import operation can identified by type=import_data, and the end of it can be type=post_import_clean_up

0 Karma
Get Updates on the Splunk Community!

Enterprise Security Content Update (ESCU) | New Releases

In December, the Splunk Threat Research Team had 1 release of new security content via the Enterprise Security ...

Why am I not seeing the finding in Splunk Enterprise Security Analyst Queue?

(This is the first of a series of 2 blogs). Splunk Enterprise Security is a fantastic tool that offers robust ...

Index This | What are the 12 Days of Splunk-mas?

December 2024 Edition Hayyy Splunk Education Enthusiasts and the Eternally Curious!  We’re back with another ...