Splunk Search

How to I sum the count with Category on specific field name and create a bar graph?

chiraggl
Engager

We get JSON data in which we have to calculate the sum of the count of all Categories and create a bar graph with specific field names (i.e. Warn, good..). Please check the data format as below:

JSON Data:

{
"links": {
"previous": null,
"next": null
},
"count": 7,
"results": [
{
"date": "2019-12-24",
"grade": null,
"counts": [
{
"count": 2123,
"category": "warn"
},
{
"count": 4353,
"category": "neutral"
},
{
"count": 9170,
"category": "good"
},
{
"count": 169,
"category": "bad"
},
{
"count": 507,
"category": "fair"
}
]
},
{
"date": "2019-11-30",
"grade": null,
"counts": [
{
"count": 1905,
"category": "warn"
},
{
"count": 4365,
"category": "neutral"
},
{
"count": 8463,
"category": "good"
},
{
"count": 143,
"category": "bad"
},
{
"count": 496,
"category": "fair"
}
]
},
{
"date": "2019-10-31",
"grade": null,
"counts": [
{
"count": 2367,
"category": "warn"
},
{
"count": 4373,
"category": "neutral"
},
{
"count": 9566,
"category": "good"
},
{
"count": 150,
"category": "bad"
},
{
"count": 647,
"category": "fair"
}
]
},
{
"date": "2019-09-30",
"grade": null,
"counts": [
{
"count": 2472,
"category": "warn"
},
{
"count": 6276,
"category": "neutral"
},
{
"count": 10281,
"category": "good"
},
{
"count": 185,
"category": "bad"
},
{
"count": 718,
"category": "fair"
}
]
},
{
"date": "2019-08-31",
"grade": null,
"counts": [
{
"count": 2439,
"category": "warn"
},
{
"count": 6283,
"category": "neutral"
},
{
"count": 10257,
"category": "good"
},
{
"count": 188,
"category": "bad"
},
{
"count": 749,
"category": "fair"
}
]
},
{
"date": "2019-07-31",
"grade": null,
"counts": [
{
"count": 141,
"category": "warn"
},
{
"count": 4420,
"category": "neutral"
},
{
"count": 10770,
"category": "good"
},
{
"count": 191,
"category": "bad"
},
{
"count": 2438,
"category": "fair"
}
]
},
{
"date": "2019-06-30",
"grade": null,
"counts": [
{
"count": 129,
"category": "warn"
},
{
"count": 4383,
"category": "neutral"
},
{
"count": 10639,
"category": "good"
},
{
"count": 199,
"category": "bad"
},
{
"count": 2567,
"category": "fair"
}
]
}
]
}alt text

0 Karma

to4kawa
Ultra Champion
| makeresults 
| eval _raw="{\"links\":{\"previous\":null,\"next\":null},\"count\":7,\"results\":[{\"date\":\"2019-12-24\",\"grade\":null,\"counts\":[{\"count\":2123,\"category\":\"warn\"},{\"count\":4353,\"category\":\"neutral\"},{\"count\":9170,\"category\":\"good\"},{\"count\":169,\"category\":\"bad\"},{\"count\":507,\"category\":\"fair\"}]},{\"date\":\"2019-11-30\",\"grade\":null,\"counts\":[{\"count\":1905,\"category\":\"warn\"},{\"count\":4365,\"category\":\"neutral\"},{\"count\":8463,\"category\":\"good\"},{\"count\":143,\"category\":\"bad\"},{\"count\":496,\"category\":\"fair\"}]},{\"date\":\"2019-10-31\",\"grade\":null,\"counts\":[{\"count\":2367,\"category\":\"warn\"},{\"count\":4373,\"category\":\"neutral\"},{\"count\":9566,\"category\":\"good\"},{\"count\":150,\"category\":\"bad\"},{\"count\":647,\"category\":\"fair\"}]},{\"date\":\"2019-09-30\",\"grade\":null,\"counts\":[{\"count\":2472,\"category\":\"warn\"},{\"count\":6276,\"category\":\"neutral\"},{\"count\":10281,\"category\":\"good\"},{\"count\":185,\"category\":\"bad\"},{\"count\":718,\"category\":\"fair\"}]},{\"date\":\"2019-08-31\",\"grade\":null,\"counts\":[{\"count\":2439,\"category\":\"warn\"},{\"count\":6283,\"category\":\"neutral\"},{\"count\":10257,\"category\":\"good\"},{\"count\":188,\"category\":\"bad\"},{\"count\":749,\"category\":\"fair\"}]},{\"date\":\"2019-07-31\",\"grade\":null,\"counts\":[{\"count\":141,\"category\":\"warn\"},{\"count\":4420,\"category\":\"neutral\"},{\"count\":10770,\"category\":\"good\"},{\"count\":191,\"category\":\"bad\"},{\"count\":2438,\"category\":\"fair\"}]},{\"date\":\"2019-06-30\",\"grade\":null,\"counts\":[{\"count\":129,\"category\":\"warn\"},{\"count\":4383,\"category\":\"neutral\"},{\"count\":10639,\"category\":\"good\"},{\"count\":199,\"category\":\"bad\"},{\"count\":2567,\"category\":\"fair\"}]}]}" 
| rename COMMENT as "This is sample of your search, index=x"
| eval category=spath(_raw,"results{}.counts{}.category")
| eval count=spath(_raw,"results{}.counts{}.count")
| eval _counter=mvrange(0,mvcount(category))
| stats list(*) as * by _counter
| foreach * 
    [eval <<FIELD>> = mvindex(<<FIELD>>,_counter)]
| stats sum(count) as count by category
| sort - count
| transpose header_field=category column_name=category

I tried to be kind to memory.
try Visualization > Bar Chart

0 Karma

vnravikumar
Champion

Hi

Check this

| makeresults 
| eval temp="{
    \"links\": {
        \"previous\": null,
        \"next\": null
    },
    \"count\": 7,
    \"results\": [{
            \"date\": \"2019-12-24\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 2123,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 4353,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 9170,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 169,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 507,
                    \"category\": \"fair\"
                                }
            ]
        },
        {
            \"date\": \"2019-11-30\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 1905,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 4365,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 8463,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 143,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 496,
                    \"category\": \"fair\"
                                }
            ]
        },
        {
            \"date\": \"2019-10-31\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 2367,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 4373,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 9566,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 150,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 647,
                    \"category\": \"fair\"
                                }
            ]
        },
        {
            \"date\": \"2019-09-30\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 2472,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 6276,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 10281,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 185,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 718,
                    \"category\": \"fair\"
                                }
            ]
        },
        {
            \"date\": \"2019-08-31\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 2439,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 6283,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 10257,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 188,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 749,
                    \"category\": \"fair\"
                                }
            ]
        },
        {
            \"date\": \"2019-07-31\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 141,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 4420,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 10770,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 191,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 2438,
                    \"category\": \"fair\"
                                }
            ]
        },
        {
            \"date\": \"2019-06-30\",
            \"grade\": null,
            \"counts\": [{
                    \"count\": 129,
                    \"category\": \"warn\"
                                },
                {
                    \"count\": 4383,
                    \"category\": \"neutral\"
                                },
                {
                    \"count\": 10639,
                    \"category\": \"good\"
                                },
                {
                    \"count\": 199,
                    \"category\": \"bad\"
                                },
                {
                    \"count\": 2567,
                    \"category\": \"fair\"
                                }
            ]
        }
    ]
}" 
| spath input=temp 
| rename results{}.counts{}.count as counts, results{}.counts{}.category as category 
| fields counts,category 
| eval temp=mvzip(counts, category) 
| mvexpand temp 
| makemv temp delim="," 
| eval counts=mvindex(temp, 0) 
| eval category=mvindex(temp, 1) 
| stats sum(counts) as counts by category
0 Karma
Get Updates on the Splunk Community!

Splunk Observability for AI

Don’t miss out on an exciting Tech Talk on Splunk Observability for AI!Discover how Splunk’s agentic AI ...

Splunk Enterprise Security 8.x: The Essential Upgrade for Threat Detection, ...

Watch On Demand the Tech Talk on November 6 at 11AM PT, and empower your SOC to reach new heights! Duration: ...

Splunk Observability as Code: From Zero to Dashboard

For the details on what Self-Service Observability and Observability as Code is, we have some awesome content ...