Splunk ITSI

Splunk Machine Learning Toolkit: Calibrating Density Function Algorithm

sc2019
New Member

In the anomaly detection process, density function algorithm outputs isOutlier field with values 0 (Normal) and 1 (Abnormal) for each data point depending on the KPI behavior and historical data:

  1. Is there anyway to calibrate the density function algorithm where the data point can show Normal, Warning and Critical zones based on the severity of the anomaly?
  2. How to output the probability densities of the data points and graph them like kernel distributions?
0 Karma
Get Updates on the Splunk Community!

Observe and Secure All Apps with Splunk

  Join Us for Our Next Tech Talk: Observe and Secure All Apps with SplunkAs organizations continue to innovate ...

Splunk Decoded: Business Transactions vs Business IQ

It’s the morning of Black Friday, and your e-commerce site is handling 10x normal traffic. Orders are flowing, ...

Fastest way to demo Observability

I’ve been having a lot of fun learning about Kubernetes and Observability. I set myself an interesting ...