Knowledge Management

How to Optimize Splunk Query to Avoid Join and Retain All Metrics with xyseries?

ravimishrabglr
Explorer

Hi everyone,

I'm working on a Splunk query to analyze API request metrics, and I want to avoid using a join as it is making my query slow. The main challenge is that I need to aggregate multiple metrics (like min, max, avg, and percentiles) and pivot HTTP status codes (S) into columns, but the current approach withxyseries is dropping additional values: Min, Max, Avg, P95, P98, P99

The reason why using xyseries - it generates columns dynamically so that my result will contain only available statuses from many available and it count accordingly .

Here’s the original working query with join:

index=sample_index sourcetype=kube:container:sample_container
| fields U, S, D
| where isnotnull(U) and isnotnull(S) and isnotnull(D)
| rex field=U "(?P<ApiName>[^/]+)(?=\/[0-9a-fA-F\-]+$|$)"
| stats count as TotalReq, by ApiName, S
| xyseries ApiName S, TotalReq
| addtotals labelfield=ApiName col=t label="ColumnTotals" fieldname="TotalReq"
| join type=left ApiName
[ search index=sample_index sourcetype=kube:container:sample_container
| fields U, S, D
| where isnotnull(U) and isnotnull(S) and isnotnull(D)
| rex field=U "(?P<ApiName>[^/]+)(?=\/[0-9a-fA-F\-]+$|$)"
| stats min(D) as Min, max(D) as Max, avg(D) as Avg, perc95(D) as P95, perc98(D) as P98, perc99(D) as P99 by ApiName]
| addinfo
| eval Availability% = round(100 - ('500'*100/TotalReq), ‌😎‌
| fillnull value=100 Availability%
| eval range = info_max_time - info_min_time
| eval AvgTPS=round(TotalReq/range,5) | eval Avg=floor(Avg) | eval P95=floor(P95) | eval P98=floor(P98) | eval P99=floor(P99)
| sort TotalReq
| table ApiName, 1*, 2*, 3*, 4*, 5*, Min, Max, Avg, P95, P98, P99, AvgTPS, Availability%, TotalReq

I attempted to optimize it by combining the metrics calculation into a single stats command and usingeventstats or streamstats to calculate the additional statistics without dropping the required fields.  Also providing additional metrics with xyseries as below but did not help.

PS: Tried with chatGPT did not help. so seeking help from real experts 🙂 

| stats count as TotalReq, min(D) as Min, max(D) as Max, avg(D) as Avg, perc95(D) as P95, perc98(D) as P98, perc99(D) as P99 by ApiName, S
| xyseries ApiName S, TotalReq, Min, Max, Avg, P95, P98, P99
Tags (2)
0 Karma
1 Solution

ITWhisperer
SplunkTrust
SplunkTrust

Glad you saw sense and ditched chatGPT!

Try something like this

index=sample_index sourcetype=kube:container:sample_container
| fields U, S, D
| where isnotnull(U) and isnotnull(S) and isnotnull(D)
| rex field=U "(?P<ApiName>[^/]+)(?=\/[0-9a-fA-F\-]+$|$)"
| eventstats min(D) as Min, max(D) as Max, avg(D) as Avg, perc95(D) as P95, perc98(D) as P98, perc99(D) as P99 by ApiName
| stats count as TotalReq, by ApiName, Min, Max, Avg, P95, P98, P99, S
| eval {S}=TotalReq
| stats values(1*) as 1* values(2*) as 2* values(3*) as 3* values(4*) as 4* values(5*) as 5* sum(TotalReq) as TotalReq by ApiName, Min, Max, Avg, P95, P98, P99
| addtotals labelfield=ApiName col=t label="ColumnTotals" 1* 2* 3* 4* 5* TotalReq
| addinfo
| eval Availability% = round(100 - ('500'*100/TotalReq),8)
| fillnull value=100 Availability%
| eval range = info_max_time - info_min_time
| eval AvgTPS=round(TotalReq/range,5) | eval Avg=floor(Avg) | eval P95=floor(P95) | eval P98=floor(P98) | eval P99=floor(P99)
| sort TotalReq
| table ApiName, 1*, 2*, 3*, 4*, 5*, Min, Max, Avg, P95, P98, P99, AvgTPS, Availability%, TotalReq

View solution in original post

ITWhisperer
SplunkTrust
SplunkTrust

Glad you saw sense and ditched chatGPT!

Try something like this

index=sample_index sourcetype=kube:container:sample_container
| fields U, S, D
| where isnotnull(U) and isnotnull(S) and isnotnull(D)
| rex field=U "(?P<ApiName>[^/]+)(?=\/[0-9a-fA-F\-]+$|$)"
| eventstats min(D) as Min, max(D) as Max, avg(D) as Avg, perc95(D) as P95, perc98(D) as P98, perc99(D) as P99 by ApiName
| stats count as TotalReq, by ApiName, Min, Max, Avg, P95, P98, P99, S
| eval {S}=TotalReq
| stats values(1*) as 1* values(2*) as 2* values(3*) as 3* values(4*) as 4* values(5*) as 5* sum(TotalReq) as TotalReq by ApiName, Min, Max, Avg, P95, P98, P99
| addtotals labelfield=ApiName col=t label="ColumnTotals" 1* 2* 3* 4* 5* TotalReq
| addinfo
| eval Availability% = round(100 - ('500'*100/TotalReq),8)
| fillnull value=100 Availability%
| eval range = info_max_time - info_min_time
| eval AvgTPS=round(TotalReq/range,5) | eval Avg=floor(Avg) | eval P95=floor(P95) | eval P98=floor(P98) | eval P99=floor(P99)
| sort TotalReq
| table ApiName, 1*, 2*, 3*, 4*, 5*, Min, Max, Avg, P95, P98, P99, AvgTPS, Availability%, TotalReq
Get Updates on the Splunk Community!

Say goodbye to manually analyzing phishing and malware threats with Splunk Attack ...

In today’s evolving threat landscape, we understand you’re constantly bombarded with phishing and malware ...

AppDynamics is now part of Splunk Ideas

Hello Splunkers, We have exciting news for you! AppDynamics has been added to the Splunk Ideas Portal. Which ...

Advanced Splunk Data Management Strategies

Join us on Wednesday, May 14, 2025, at 11 AM PDT / 2 PM EDT for an exclusive Tech Talk that delves into ...