Getting Data In

Roll buckets to warm and frozen at the same time.

oliverj
Communicator

Our splunk system has the potential to grow significantly in the near future, so a veeam backup of the indexer VM will not be practical for long term storage (5 years).
My plan:
2 indexers in a multisite cluster. 100% of my data will exist at each site.
The hot +warm buckets + OS will be on the primary partition, backed up by veeam with VSS.
The cold/frozen will be archived off to long term. Warm/Cold/Frozen will be something like 6 months/1.5 year/5year.
But, I don't want to be completely dependent on synchronization of my indexes between the 2 sites, and data corruption/loss will involve some severe implications for us.

What I would like to do is have a hot bucket roll off to both warm AND frozen at the same time. That way, my long-term storage is using the smaller buckets, I don't have to worry about waiting for things to age off to frozen, and I have a nice safe copy of my frozen data.

I see that buckets can go to different locations, but is it possible to route a bucket to 2 locations/statuses simultaneously?

Tags (3)
0 Karma
1 Solution

mattymo
Splunk Employee
Splunk Employee

Why don't you trust the replication of data between sites? Why bother clustering at all then? This is the only reason clustering exists.

you can't roll buckets to two locations per se, but you could look at the data roll feature, which will replicate a single copy of each journal.gz to s3 or hdfs. (the journal.gz is what rolls to frozen and is why it is smaller than warm, see tsidx reduction link below)

https://docs.splunk.com/Documentation/Splunk/6.6.2/Indexer/ArchivingindexestoHadoop

(don't be fooled by the name, you don't need to run hadoop to use the feature, it simply uses hadoop binaries to do the coping of the buckets)

Concern about bucket size is not affected by the items you have discussed. That is solely controlled by indexes.conf configurations.
https://docs.splunk.com/Documentation/Splunk/6.6.2/Admin/Indexesconf

Technically I guess you could write some logic to manually copy all journal.gz from warm buckets to a disk mount somewhere....but I'd guess that might be more prone to data loss than replication as we ship it.

Honestly I would look at tsidx reduction before anything, as all that is described here smells like over complexity to me.

https://docs.splunk.com/Documentation/Splunk/6.6.2/Indexer/Reducetsidxdiskusage

- MattyMo

View solution in original post

usd0872
Path Finder

Depending on your environment and exact requirements, there might be another approach. If you

  1. have control over how all the systems sending data
  2. are willing to do a bit of additional manual or automated synchronization work of indexes.conf
  3. are happy with the backup having all the data, but not necessarily in the same buckets as your live data

then you could

  • setup a "backup" indexer: one dedicated single indexer (not part of your indexer cluster!)
  • configure the "backup" indexer with the same indexes.conf files except the settings which determine how long the data remains in hot/warm/cold (time or size settings)
    • configure all the indexes on the special "backup" indexer so the buckets are frozen after a relatively short time, for example one day
  • make sure that your systems send the data to both, your regular indexer cluster and your special "backup" indexer

The data on your regular indexer cluster remains available and is searchable. Your search head(s) only use this indexer cluster. The copy sent to the "backup" indexer is for backup purposes only; it is frozen after a short time due to the different settings and you can backup the frozen data and even remove it once it's backed up. The "backup" indexer does not need too much disk space as it only stores the data for a relatively short time. The disk requirements on your regular indexers could possibly be somewhat reduced too if you don't need to freeze buckets there any more and can just delete the data when it times out.

Just an idea, but theoretically it should work.

0 Karma

mattymo
Splunk Employee
Splunk Employee

Why don't you trust the replication of data between sites? Why bother clustering at all then? This is the only reason clustering exists.

you can't roll buckets to two locations per se, but you could look at the data roll feature, which will replicate a single copy of each journal.gz to s3 or hdfs. (the journal.gz is what rolls to frozen and is why it is smaller than warm, see tsidx reduction link below)

https://docs.splunk.com/Documentation/Splunk/6.6.2/Indexer/ArchivingindexestoHadoop

(don't be fooled by the name, you don't need to run hadoop to use the feature, it simply uses hadoop binaries to do the coping of the buckets)

Concern about bucket size is not affected by the items you have discussed. That is solely controlled by indexes.conf configurations.
https://docs.splunk.com/Documentation/Splunk/6.6.2/Admin/Indexesconf

Technically I guess you could write some logic to manually copy all journal.gz from warm buckets to a disk mount somewhere....but I'd guess that might be more prone to data loss than replication as we ship it.

Honestly I would look at tsidx reduction before anything, as all that is described here smells like over complexity to me.

https://docs.splunk.com/Documentation/Splunk/6.6.2/Indexer/Reducetsidxdiskusage

- MattyMo

oliverj
Communicator

I have a great amount of confidence in the clustering -- that is why I am using it. My "don't trust" comment was too harsh.
But, NOWHERE in my system am I comfortable saying that I have no external backups.
Being able to archive off my log data to a completely separate system is a safety net we need.

0 Karma

mattymo
Splunk Employee
Splunk Employee

I can understand that but to be clear we are saying a fully redundant second site is not enough redundancy? AND full VM backups? (not sure vm backups are work for you tbh, maybe for config directories, but for all the data? these VMs will get big)

Still I can appreciate the idea, so to address this, I recommend looking at data roll.

You could archive as soon as the bucket rolls to warm (or any timeframe you wish) and roll it to a hadoop instance or amazon s3 bucket, or Isilon NAS, etc- basically anything that can run s3). And it is identical to rolling to frozen, as only the journal.gz goes. It even dedups replicated data and has fault tolerance.

Otherwise I'd look at rsync of the warm db to another system...I have my doubts this will scale if you do grow large...or striaght up configure your systems to send directly to an archive as a second data landing zone.

Also, remember the journal.gz is a proprietary file type, so if you roll them to archive, you need to bring em back into Splunk to be thawed, or use the bucket reader app in hadoop.

- MattyMo
0 Karma

oliverj
Communicator

I am looking less for redundancy (as provided by cluster), and more to be able to take my X# of logs completely out of the system. Disaster recovery scenarios, or malicious user activity.

As for the VM -- I expect the majority of the data to not be part of the VEEAM backup. We are still sizing things, but I would rather go too safe and work backwards than have an issue I cannot get out of.

0 Karma

mattymo
Splunk Employee
Splunk Employee

when you say "the system" do you really mean Splunk? or just the physical system itself?, cause it almost sounds like simply sending a second stream from source directly to archive is what would be easiest. is that possible?

If your are ok with the DR plan to be logs in the format of journal.gz, then yeah data roll or some custom rsync

- MattyMo
0 Karma

oliverj
Communicator

By "system", I mostly mean splunk/the cluster.
We archive logs from several different groups to intermediate forwarders and finally to our splunk.
We have no insight into what others have, other than what they send via their intermediate forwarders.

0 Karma

mattymo
Splunk Employee
Splunk Employee

so you are ok with it being in the journal.gz splunk proprietary format in the archive? if so, rsync or data roll

- MattyMo
0 Karma

oliverj
Communicator

I believe that just the journal.gz should be fine. It is a small file, has all of the data i would need to make it searchable again, and can be copied off with no impacts if i wait until it is warm. Splitting to warm+frozen simultaneously would be more fun, but I shall make do.

Thank you for your help here.

0 Karma

mattymo
Splunk Employee
Splunk Employee

Well if you can swing an HDFS or S3 interface data roll technically gives u warm + frozen(archive)!

Any time!

Good on ya for dilligently planjing for the worst!

- MattyMo
0 Karma

somesoni2
Revered Legend

I don't think there is any native way to do this. You might have to write a custom script, at regular interval, which will sync warm buckets (default location: $SPLUNK_HOME/var/lib/splunk/<<IndexName>>/db and starts with db_) to your frozen location, may be rsync it.

0 Karma

oliverj
Communicator

I was aiming to use frozen to keep my storage size down -- it seems frozen buckets are significantly smaller than warm with the extra files removed.

0 Karma
Get Updates on the Splunk Community!

Earn a $35 Gift Card for Answering our Splunk Admins & App Developer Survey

Survey for Splunk Admins and App Developers is open now! | Earn a $35 gift card!      Hello there,  Splunk ...

Continuing Innovation & New Integrations Unlock Full Stack Observability For Your ...

You’ve probably heard the latest about AppDynamics joining the Splunk Observability portfolio, deepening our ...

Monitoring Amazon Elastic Kubernetes Service (EKS)

As we’ve seen, integrating Kubernetes environments with Splunk Observability Cloud is a quick and easy way to ...