All Apps and Add-ons

Is data standardization and scaling unnecessary with Splunk and the Machine Learning Toolkit?

takaakinakajima
Path Finder

I use Machine Learning Toolkit 2.0.0 with Splunk Enterprise 6.5, and found implementations of algorithms in
SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos

Only SGDClassifier, SGDRegressor, and SpectralClustering algorithms,
data will be scaled with StandardScaler before calculation.
It seems that the other algorithms (e.g. LenearRegression) do not scale data.

Is scaling unnecessary with Splunk/Machine Learning Toolkit?
If required, how do we standardize data before calculation?

Scikit-learn notes "Standardization of datasets is a common requirement for many machine learning estimators".
http://scikit-learn.org/stable/modules/preprocessing.html

0 Karma
1 Solution

grana_splunk
Splunk Employee
Splunk Employee

Simply use StandardScaler, if you want to scale your data

For example: ,... | fit StandardScaler ... | fit LinearRegression ...

View solution in original post

grana_splunk
Splunk Employee
Splunk Employee

Simply use StandardScaler, if you want to scale your data

For example: ,... | fit StandardScaler ... | fit LinearRegression ...

takaakinakajima
Path Finder

Hi grana.

Thank you for your shrewd advice.
That's just the thing!!

0 Karma
Career Survey
First 500 qualified respondents will receive a $20 gift card! Tell us about your professional Splunk journey.
Get Updates on the Splunk Community!

Tech Talk Recap | Mastering Threat Hunting

Mastering Threat HuntingDive into the world of threat hunting, exploring the key differences between ...

Observability for AI Applications: Troubleshooting Latency

If you’re working with proprietary company data, you’re probably going to have a locally hosted LLM or many ...

Splunk AI Assistant for SPL vs. ChatGPT: Which One is Better?

In the age of AI, every tool promises to make our lives easier. From summarizing content to writing code, ...