All Apps and Add-ons

Is data standardization and scaling unnecessary with Splunk and the Machine Learning Toolkit?

takaakinakajima
Path Finder

I use Machine Learning Toolkit 2.0.0 with Splunk Enterprise 6.5, and found implementations of algorithms in
SPLUNK_HOME/etc/apps/Splunk_ML_Toolkit/bin/algos

Only SGDClassifier, SGDRegressor, and SpectralClustering algorithms,
data will be scaled with StandardScaler before calculation.
It seems that the other algorithms (e.g. LenearRegression) do not scale data.

Is scaling unnecessary with Splunk/Machine Learning Toolkit?
If required, how do we standardize data before calculation?

Scikit-learn notes "Standardization of datasets is a common requirement for many machine learning estimators".
http://scikit-learn.org/stable/modules/preprocessing.html

0 Karma
1 Solution

grana_splunk
Splunk Employee
Splunk Employee

Simply use StandardScaler, if you want to scale your data

For example: ,... | fit StandardScaler ... | fit LinearRegression ...

View solution in original post

grana_splunk
Splunk Employee
Splunk Employee

Simply use StandardScaler, if you want to scale your data

For example: ,... | fit StandardScaler ... | fit LinearRegression ...

takaakinakajima
Path Finder

Hi grana.

Thank you for your shrewd advice.
That's just the thing!!

0 Karma
Get Updates on the Splunk Community!

Splunk AI Assistant for SPL | Key Use Cases to Unlock the Power of SPL

Splunk AI Assistant for SPL | Key Use Cases to Unlock the Power of SPL  The Splunk AI Assistant for SPL ...

Buttercup Games: Further Dashboarding Techniques (Part 5)

This series of blogs assumes you have already completed the Splunk Enterprise Search Tutorial as it uses the ...

Customers Increasingly Choose Splunk for Observability

For the second year in a row, Splunk was recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for ...