All Apps and Add-ons

How to do Upsampling of Minority Class in Splunk MLTK?

sc2019
New Member

I am working on a classification problem in Splunk Machine Learning Toolkit. The data is highly imbalanced. The majority class constitute 99% of the data and the rest is Minority Class. Is there anyway to up sample the minority class in the data or any other methods to add the synthetic data to level the imbalanced classes?

0 Karma

grana_splunk
Splunk Employee
Splunk Employee

To my knowledge, MLTK do not have any algorithm specific to imbalance dataset but they do have a github app i.e. a repo/app for algorithms: https://splunkbase.splunk.com/app/4403/ and it uses MLTK libraries.

One of the algorithm under github app modifies the DecisionTreeClassifier and has a class weight parameter added to it.

So install github app and make it global and use the following

.| fit CustomDecisionTreeClassifier class_weight="{'Yes':1,'No':0.1}">

Need to check the algo before installing github app, then checkout : https://github.com/splunk/mltk-algo-contrib/blob/master/src/bin/algos_contrib/CustomDecisionTreeClas...

0 Karma
Career Survey
First 500 qualified respondents will receive a $20 gift card! Tell us about your professional Splunk journey.
Get Updates on the Splunk Community!

Data Persistence in the OpenTelemetry Collector

This blog post is part of an ongoing series on OpenTelemetry. What happens if the OpenTelemetry collector ...

Introducing Splunk 10.0: Smarter, Faster, and More Powerful Than Ever

Now On Demand Whether you're managing complex deployments or looking to future-proof your data ...

Community Content Calendar, September edition

Welcome to another insightful post from our Community Content Calendar! We're thrilled to continue bringing ...