All Apps and Add-ons

How to predict from time series values for Multiple fields? (Machine Learning Toolkit)

x213217
Explorer
index=deg host=host sourcetype=source source=logpath Name=* Pages=* Schema=* 
| eval SizeInMB = ((Pages * 4 * 1024)/1048576)
| eval Maximum = max(SizeInMB)
| sort -Maximum
| where Maximum > 25000
| timechart span=1hr max(Maximum) by Name
| rename Maximum as "MBSize"
| Predict Name 1

This is my search query that produces a time series of data points (every hour) for Megabyte Size of around 10 tables names.

Name 1 Name 2 Name 3 Name 4 ...
01:00 MBsize MBsize MBsize MBsize
02:00 MBsize MBsize MBsize MBsize
03:00 MBsize MBsize MBsize MBsize
04:00 MBsize MBsize MBsize MBsize
...

My Question is...How do I predict the MBsize for lets say 2 months in the future for each table name based on the gathered previous data points for each table?

I understand how this can be done forecasted for 1 Table Name by specifying | Predict Name 1 Name 2 Name 3 etc.. but I don't know how to pass in all the table names in as a list to handle predicting Multiple tables names based on their past data points.
I cannot hardcode the Name 1 Name 2 Name 3...etc because they may be different based on the table names i retrieve through the search.

0 Karma
Get Updates on the Splunk Community!

Exciting News: The AppDynamics Community Joins Splunk!

Hello Splunkers,   I’d like to introduce myself—I’m Ryan, the former AppDynamics Community Manager, and I’m ...

The All New Performance Insights for Splunk

Splunk gives you amazing tools to analyze system data and make business-critical decisions, react to issues, ...

Good Sourcetype Naming

When it comes to getting data in, one of the earliest decisions made is what to use as a sourcetype. Often, ...